Activation of the BK (SLO1) potassium channel by mallotoxin.
نویسندگان
چکیده
Pharmacologic approaches to activate K+ channels represent an emerging strategy to regulate membrane excitability. Here we report the identification and characterization of a lipid soluble toxin, mallotoxin (rottlerin), which potently activates the large conductance voltage and Ca2+-activated K+ channel (BK) expressed in a heterologous expression system and human vascular smooth muscle cells, shifting the conductance/voltage relationship by >100 mV. Probing the mechanism of action, we discover that the BK channel can be activated in the absence of divalent cations (Ca2+, Mg2+), suggesting that the mallotoxin mechanism of action involves the voltage-dependent gating of the channel. Mallotoxin-activated channels remain incrementally sensitive to Ca2+ and beta subunits. In comparison to other small hydrophobic poisons, anesthetic agents, and protein toxins that inhibit ion channel activity, mallotoxin potently activates channel activity. In certain respects, mallotoxin acts as a BK channel beta1 subunit mimetic, preserving BK channel Ca2+ sensitivity yet adjusting the set-point for BK channel activation to a more hyperpolarized membrane potential.
منابع مشابه
Molecular mechanism of pharmacological activation of BK channels.
Large-conductance voltage- and Ca(2+)-activated K(+) (Slo1 BK) channels serve numerous cellular functions, and their dysregulation is implicated in various diseases. Drugs activating BK channels therefore bear substantial therapeutic potential, but their deployment has been hindered in part because the mode of action remains obscure. Here we provide mechanistic insight into how the dehydroabiet...
متن کاملRelationship between auxiliary gamma subunits and mallotoxin on BK channel modulation
The large-conductance, calcium- and voltage-activated K+(BK) channel consists of the pore-forming α subunits (BKα) and auxiliary subunits. The auxiliary γ1-3 subunits potently modulate the BK channel by shifting its voltage-dependence of channel activation toward the hyperpolarizing direction by approximately 145 mV (γ1), 100 mV (γ2), and 50 mV (γ3). Mallotoxin is a potent small-molecule BK cha...
متن کاملSingle Channel Recordings Reveal Differential β2 Subunit Modulations Between Mammalian and Drosophila BKCa(β2) Channels
Large-conductance Ca2+- and voltage-activated potassium (BK) channels are widely expressed in tissues. As a voltage and calcium sensor, BK channels play significant roles in regulating the action potential frequency, neurotransmitter release, and smooth muscle contraction. After associating with the auxiliary β2 subunit, mammalian BK(β2) channels (mouse or human Slo1/β2) exhibit enhanced activa...
متن کاملThe interface between membrane-spanning and cytosolic domains in Ca²+-dependent K+ channels is involved in β subunit modulation of gating.
Large-conductance, voltage-, and Ca²⁺-dependent K⁺ (BK) channels are broadly expressed in various tissues to modulate neuronal activity, smooth muscle contraction, and secretion. BK channel activation depends on the interactions among the voltage sensing domain (VSD), the cytosolic domain (CTD), and the pore gate domain (PGD) of the Slo1 α-subunit, and is further regulated by accessory β subuni...
متن کاملTwo distinct effects of PIP2 underlie auxiliary subunit-dependent modulation of Slo1 BK channels
Phosphatidylinositol 4,5-bisphosphate (PIP2) plays a critical role in modulating the function of numerous ion channels, including large-conductance Ca(2+)- and voltage-dependent K(+) (BK, Slo1) channels. Slo1 BK channel complexes include four pore-forming Slo1 (α) subunits as well as various regulatory auxiliary subunits (β and γ) that are expressed in different tissues. We examined the molecul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 280 35 شماره
صفحات -
تاریخ انتشار 2005